Mechanism of Scientific Inertia for Theories

From Encyclopedia of Scientonomy
Jump to navigation Jump to search

What makes the theories of an agent's mosaic continue to remain in the mosaic?

It is important to understand what makes a theory that is already part of an agent's mosaic stay in that mosaic. In other words, it is important to know under what conditions such an inertia is possible.

In the scientonomic context, this question was first formulated by Hakob Barseghyan in 2015. The question is currently accepted as a legitimate topic for discussion by Scientonomy community.

In Scientonomy, the accepted answer to the question is:

  • An element of the mosaic remains in the mosaic unless replaced by other elements.

Scientonomic History

Acceptance Record

Here is the complete acceptance record of this question (it includes all the instances when the question was accepted as a legitimate topic for discussion by a community):
CommunityAccepted FromAcceptance IndicatorsStill AcceptedAccepted UntilRejection Indicators
Scientonomy1 January 2016This is when the community accepted its first answer to the question, The First Law (Barseghyan-2015), which indicates that the questions is itself considered legitimate.Yes

All Theories

According to our records, no theory has attempted to answer this question.

If an answer to this question is missing, please click here to add it.

Accepted Theories

According to our records, no theory on this topic has ever been accepted.

Suggested Modifications

According to our records, there have been no suggested modifications on this topic.

Current View

In Scientonomy, the accepted answer to the question is The First Law (Barseghyan-2015).

Mechanism of Scientific Inertia for Epistemic Elements

The First Law (Barseghyan-2015) states: "An element of the mosaic remains in the mosaic unless replaced by other elements."

The First Law Barseghyan 2015.png

The following passage from The Laws of Scientific Change summarizes the gist of the law:

According to the first law, any element of the mosaic of accepted theories and employed methods remains in the mosaic except insofar as it is overthrown by another element or elements. Basically, the law assumes that there is certain inertia in the scientific mosaic: once in the mosaic, elements remain in the mosaic until they get replaced by other elements. It is reasonable therefore to call it the law of scientific inertia.1p. 123

The First Law for Theories

The First Law for Theories Barseghyan 2015.jpg

An accepted theory is not rejected unless there is a suitable replacement, even though sometimes that replacement may simply be the negation of the theory. For example, Issac Newton's theory of universal gravitation produced small errors in predicting the movements of the planet Mercury.1p. 125 Throughout the eighteenth and early nineteenth century, it was noted that predictions of the time when the disk of Mercury would appear in transit across the sun's disk were off, sometimes by hours, or even as much as a day. These anomalies caught the attention of the French mathematician Urbain Jean Joseph Leverrier, who proposed an explanation consistent with Newton's theory in 1859. Mercury, he supposed, was being perturbed by the gravitational pull of an unknown planet orbiting closer to the sun. The hypothetical planet, named Vulcan, was searched for, but never found.2 Newton's theory had other predictive failures as well, but these did not lead to the rejection of the theory. It was not rejected until after 1915, when Albert Einstein showed that Mercury's movements could be explained by his new theory of gravity, the general theory of relativity.3

The First Law for Methods

The First Law for Methods Barseghyan 2015.jpg

Formulated for methods, the first law states that the implicit expectations employed in theory assessment will continue to be employed until they are replaced by some alternate expectations.

Related Topics

This question is a subquestion of Mechanism of Scientific Inertia for Epistemic Elements.

References

  1. a b  Barseghyan, Hakob. (2015) The Laws of Scientific Change. Springer.
  2. ^  Fontenrose, Robert. (1973) In Search of Vulcan. Journal for the History of Astronomy 4 (3), 145-158.
  3. ^  Clark, Ronald W. (1971) Einstein: The Life and Times. World.