Changes

Jump to navigation Jump to search
no edit summary
|Topic Type=Descriptive
|Description=The process of scientific change is not restricted to any single community. As such, the evolution of different mosaics could take two very different paths. This question seeks to uncover whether or not separate communities would experience similar stages of change in their mosaics and to elucidate under which circumstances such changes can occur.
 
There are, broadly speaking, two stances concerning this question. One is that scientific change is purely deterministic – i.e. that given a scientific mosaic at some time, it will evolve in one and only one fashion. This thesis states that “two unconnected scientific communities will necessarily pass through similar stages”[[CiteRef::Barseghyan (2015)|p. 197]], and that there is no room for sociological or other extra-scientific factors to influence the evolution of the accepted theories and employed methods of a given community. This view is opposed by the view that scientific change is not strictly deterministic – i.e. that given a scientific mosaic at some time, it can evolve in many ways, and there are many ways it could have come to be. We will refer to these two stances as “scientific determinism” and “scientific underdeterminism”, respectively. While determinism is relatively easy to describe, underdeterminism is more subtle, and there a number of different stances one may take while still being said to support scientific underdeterminism. In order to sort this out, it is instructive to make the traditional distinction between so-called “holist underdeterminism” and “contrastive underdeterminism”.
 
Holist underdeterminism is said to occur when we are unable to test a specific hypothesis in isolation. For example, when testing Einstein’s general relativity, astronomers attempted to observe light bending during a solar eclipse – they did in fact observe this light bending, and used this as evidence to confirm Einstein’s theory and to reject Newton’s. But, strictly speaking, the evidence given by this experiment underdetermines our response to it, because it could be that this test refutes theories of optics rather than Newton’s theory of gravity, or that it refutes our estimates of the mass of the sun, or any other connected, tacitly assumed theory. The key point behind holist underdeterminism is that there can be no such thing as a “crucial experiment” – an experiment that decisively confirms one theory and refutes another. This idea was developed by Duhem in his Aim and Structure of Physical Theory, and was further developed by Quine in subsequent years.
 
Contrastive underdeterminism is more relevant to our discussion on the thesis of scientific underdeterminism. It states that “for any body of evidence confirming a theory, there might well be other theories that are also well confirmed by that same body of evidence” – where the meaning of “confirmed” is of course dependent on the given scientific community. It may be better to state this as “for any body of evidence causing a theory to satisfy a communities acceptance criteria, there might well be other theories…” The reason this form of underdeterminism is more relevant to the issue at hand is because it clearly states that there are many possible theories that could satisfy a given body of evidence – and that as a result, there may be no way of predicting which of them is accepted. A similar thesis can be formulated for methods in the obvious way – given a community’s implicit expectations, there are many methods that can implement these, so there is no way to predict which of them will become implemented.
|Parent Topic=Mechanism of Scientific Change
|Authors List=Hakob Barseghyan,
|Formulated Year=2015
|Prehistory=There are, broadly speaking, two stances concerning the determinism of scientific change. One is that scientific change is purely deterministic – i.e. that given a scientific mosaic at some time, it will evolve in one and only one fashion. This thesis states that “two unconnected scientific communities will necessarily pass through similar stages” [[CiteRef::Barseghyan (2015)|p. 197]], and that there is no room for sociological or other extra-scientific factors to influence the evolution of the accepted theories and employed methods of a given community. This position has been held by many philosophers since at least Leibniz, as pointed out by Laudan – although it is likely that this view would be accepted by much earlier figures such as Plato or Aristotle.[[CiteRef::Laudan (1984)|pp. 5, 11, 25, 33]] [[CiteRef::Barseghyan (2015)|p. 197]] According to Laudan, most philosophers subscribed to scientific determinism (what he calls the “Leibnizian ideal”) only up until recently. Early and mid 19th century philosophers like Mill, Herschel and Whewell would subscribe to determinism, with Mill believing not only that scientific change is deterministic, but that we actually have the explanatory rules.[[CiteRef::Laudan (1984)|p. 5]] Likewise, logical positivists and the likes of Carnap, Reichenbach, and Popper believed in scientific determinism, and strove to find the rules that actually determine scientific change. [[CiteRef::Laudan (1984)|p. 6]]
This traditional position is opposed by the view that scientific change is not strictly deterministic – i.e. that given a scientific mosaic at some time, it can evolve in many ways, and there are many ways it could have come to be. Scientific underdeterminism is supported by the SSK movement, Laudan, Duhem and Quine, the latter two taking a more radical stance.[[CiteRef::Stanford (2016)]] While determinism is relatively easy to describe, underdeterminism is more subtle, and there a number of different stances one may take while still being said to support scientific underdeterminism. In order to sort this out, it is instructive to make the traditional distinction between so-called “holist underdeterminism” and “contrastive underdeterminism”.[[CiteRef::Stanford (2016)]]
Holist underdeterminism is said to occur when we are unable to test a specific hypothesis in isolation. For example, when testing Einstein’s general relativity, astronomers attempted to observe light bending during a solar eclipse – they did in fact observe this light bending, and used this as evidence to confirm Einstein’s theory and to reject Newton’s. But, strictly speaking, the evidence given by this experiment underdetermines our response to it, because it could be that this test refutes theories of optics rather than Newton’s theory of gravity, or that it refutes our estimates of the mass of the sun, or any other connected, tacitly assumed theory. The key point behind holist underdeterminism is that there can be no such thing as a “crucial experiment” – an experiment that decisively confirms one theory and refutes another. This idea was developed by Duhem in his Aim and Structure of Physical Theory, and was further developed by Quine in subsequent years.[[CiteRef::Stanford (2016)]]
Contrastive underdeterminism is more relevant to our discussion on the thesis of scientific underdeterminism. It states that “for any body of evidence confirming a theory, there might well be other theories that are also well confirmed by that same body of evidence”[[CiteRef::Stanford (2016)]] – where the meaning of “confirmed” is of course dependent on the given scientific community. It may be better to state this as “for any body of evidence causing a theory to satisfy a communities acceptance criteria, there might well be other theories…” The reason this form of underdeterminism is more relevant to the issue at hand is because it clearly states that there are many possible theories that could satisfy a given body of evidence – and that as a result, there may be no way of predicting which of them is accepted. A similar thesis can be formulated for methods in the obvious way – given a community’s implicit expectations, there are many methods that can implement these, so there is no way to predict which of them will become implemented.
|Page Status=Needs Editing
|Editor Notes=Needs prehistory and elaboration of description

Navigation menu