Changes

Jump to navigation Jump to search
594 bytes added ,  19:06, 23 February 2017
no edit summary
Both Newton’s physics and philosophy were heavily influenced by Descartes’ ideas though they were also a challenge to what had, by then, become the new Cartesian orthodoxy. Descartes' '''mechanical natural philosophy''' was derived from ancient Greek atomism. He was the most prominent member of a community of '''corpuscularist''' thinkers, who maintained that visible objects were made of unobservably tiny particles, whose relations and arrangement were responsible for the properties of visible bodies. Particles influenced one another only by direct physical contact, which was the cause of all motion, and ultimately all change.[[CiteRef::Disalle (2004)]] Aristotle had explained the properties of visible bodies in terms of their form, rather than in terms of the arrangement of their constituent parts. He maintained that heavy objects, composed of the element earth, tended towards their natural place; the center of the universe. The concept of a sphere of earth at rest in the center of the universe was central to Aristotle's entire cosmology. Motion in the terrestrial and celestial realms were seen as fundamentally different.[[CiteRef::Bodnar (2016)]] Descartes' theories explained gravity as due to a swirling vortex of particles around the Earth, which pushed things towards its center. Celestial motions were not different in kind. In accord with Copernican heliocentrism, Descartes posited that a larger vortex surrounded the sun, with the smaller planetary vorticies caught in a larger solar vortex.[[CiteRef::Garber (1992)]][[CiteRef::Disalle (2004)]] In Newton's time, major champions of the mechanical natural philosophy included Christiaan Huygens (1629-1695) and Gottfried Wilhelm Leibniz (1646-1716), who was to become a major rival of Newton's. By the time Newton published his magnum opus, ''Philosophiae Naturalis Principia Mathematica'' (''Mathematical Principles of Natural Philosophy'')in 1687, Descartes' views had been accepted at Cambridge. The title of Newton's work suggests he intended it to be in dialog with Descartes' ''Principia Philosophiae'' (''Principles of Philosophy'') published in 1644.[[CiteRef::Janiak (2016)]] Newton contested Cartesianism as the orthodoxy he sought to overturn.
Descartes saw the ultimate justification of knowledge claims to lie with human reason and the absence of doubt. He relied on classical methods of theorizing and conjectured hypotheses in order to construct scientific propositions.[[CiteRef::Janiak (2016)]] Such a '''rationalist''' approach to knowledge was also championed by Baruch Spinoza (1632-1677), Nicolas Malebranche (1638-1715), and by Gottfried Wilhelm Leibniz.[[CiteRef::Lennon and Dea (2014)]] But, by the early 17th century, experimental researchers like Galileo Galilei and Robert Boyle (1627-1691) had begun to elaborate and practice a very different approach to knowledge based on experimentation and extensive use of mathematics. Following the inductive methodology advocated by Francis Bacon(1561-1626), they maintained that theoretical principles emerged from experimental data by a process of inductive generalization. However, there were also dissenters like Newton's contemporary Christiaan Huygens, who believed their that most experimental work involved formulating hypotheses about unobservable entities, which were tested by their observable consequences. This was an early form of hypothetico-deductivism. Newton rejected Cartesian rationalism, and argued that the Cartesians did not sufficiently employ mathematics and experimentation in their work. He rejected and the method of hypotheses outright. [[CiteRef::McMullin (2001)]][[CiteRef::Janiak (2016)]] He supported inductivism, and held epistemological views similar to those of his contemporary and friend [[John Locke]](1632-1704), who maintained that all knowledge came from experience.[[CiteRef::Rogers (1982)]]
|Major Contributions={{#evt:
service=youtube
Out of these four rules a new, engaged method for conducting science emerged that stood in stark contrast to the previous passive and theoretical Cartesian and Aristotelian-scholastic methods. Propositions are born from natural sources and placed back into the natural world to be tested empirically.[[CiteRef::Smith (2002)]] As the four rules were absorbed into the ensuing mosaic, the calculus became deeply incorporated in the experimental method, as it was used to mathematically calculate empirical predictions from natural laws, and then evaluate how exactly the prediction matched the observed reality. Newton claimed to have derived his law of universal gravitation using this method as applied to Kepler's laws of planetary motion. In the Cartesian natural philosophy, the centripetal force had already been defined as the agent that pulled the moon towards the Earth, keeping its orbit circular rather than linear. Newton appealed to rules 1) and 2) to claim that the centripetal force, and the force that compelled objects to move downwards towards the Earth, were merely two different expressions of the same thing. Newton then went on to apply the third rule, and argue that this force, which he called gravity, must be a universal property of all material objects. From here, he went on to argue for the unification of superlunary and sublunary phenomena.[[CiteRef::Harper (2002)|pp. 183-184]]
Historical research provides evidence the scientific community did not use Newton's own criteria in evaluating his work. Newton's theories did not become accepted outside of England until after its prediction of the oblate spheroid shape of the Earth was confirmed by expeditions to Lapland and Peru. Newton's theories became accepted via a hypothetico-deductive method based on confirmed novel predictions that distinguished it from the rival Cartesian vortices, rather than via Newton's own inductive method. [[CiteRef::Barseghyan (2015)|p. 48-49]][[CiteRef::Terrall (1992)]]
Although not all of the ontological changes to the mosaic described in The ''Principia'' were immediately accepted, the new experimental philosophy that he described influenced contemporary scientists within the same century of it’s publication. [Newtons philosophy] Both prominent 17th century natural philosophers Christiaan Huygens and John Locke are known to have taken the experimental philosophy, if not necessarily the full content of Newton’s theories, to heart.[[CiteRef::Janiak (2016)]] By 1700 the acceptance of “experimental philosophy” methodological structure had overtaken that of Cartesianism in England.[[CiteRef::Janiak (2016)]]
2,020

edits

Navigation menu