Changes

Jump to navigation Jump to search
10 bytes added ,  22:16, 3 August 2017
no edit summary
|Criticism=Newton's theories provoked immediate and wide interest in Britain, and became accepted there by the first decade of the eighteenth century. [[CiteRef::Smith (2009)]][[CiteRef::Barseghyan (2015) p. 210]] In continental Europe, acceptance came more slowly. To proponents of the mechanical philosophy, it was methodologically necessary that all motion be given a cause involving direct physical contact of bodies. Many of Newton's continental contemporaries, in particular Leibniz and Huygens, strongly objected to the idea that forces could act at a distance. Leibniz regarded the theory of gravitation as a regression in natural philosophy and accused Newton of treating gravity as an 'occult quality' beyond philosophical understanding. After an intense debate in the early eighteenth century. [[CiteRef::Janiak (2016)]] Newtonian gravitation theory became accepted through much of continental Europe by the middle of that century [[CiteRef::Barseghyan (2015) pp. 211-212]][[CiteRef::Aiton (1958) p. 172]][[CiteRef::Frangsmyr (1974) p. 35]]
More than two centuries after Newton published the ''Principia'', a new theory of motion and gravitation was formulated by Albert Einstein (1879-1955), who was inspired by new developments in non-Euclidean geometry and by problems with James Clerk Maxwell's (1831-1879) theory of electromagnetic radiation. The new theory replaced Newton's theory as the accepted theory of motion and gravitation by about 1920. Einstein's '''General Theory of Relativity''' explained the success of its predecessor by showing that its equations reduce to those of Newton in the limit of weak gravitational fields and velocities that are an insignificant fraction of that of light. Einstein's theory eliminated the problem of action at a distance by postulating that the mass of an object mass warps space-time, and that the local manifestation of this curvature influences distant bodies. [[CiteRef::Barseghyan (2015)|p. 125]][[CiteRef::Isaacson (2007)]]
Newton's experimental philosophy shaped accepted claims about scientific methodology, influencing the methodological pronouncements of George Berkeley (1685-1753), David Hume, Thomas Reid (1710-1796), and Immanuel Kant (1724-1804). [[CiteRef::McMullin (2001)]] However, according to McMullin, Newton's methodology ran contrary to the consensus that had been emerging among natural philosophers of his time, in favor of the '''hypothetico-deductive method'''. [[CiteRef::McMullin (2001)]] Historical research shows that the scientific community did not use Newton's own criteria in evaluating his work. His theories did not become accepted outside of England until after their prediction of the oblate spheroid shape of the Earth was confirmed by expeditions to Lapland and Peru. Newton's own theories became accepted via a '''hypothetico-deductive method''' based on confirmed novel predictions that distinguished them from the rival theory of Cartesian vortices, rather than by Newton's own '''inductive methodology'''. Further, Newton's theory, in fact, posited unobservable hypothetical entities, including gravitational attraction, absolute space, and absolute time.[[CiteRef::Barseghyan (2015)|p. 48-49]][[CiteRef::Terrall (1992)]][[CiteRef::McMullin (2001)]]
2,020

edits

Navigation menu