Changes

Jump to navigation Jump to search
601 bytes added ,  16:50, 9 February 2023
no edit summary
{{Definitional Topic|Question=What is '''Scientific scientific community''' refers to the ? Can it be defined as more than simply “the bearer of a mosaic”?|Description=As soon as discussions about the laws of scientific change and the field of [[Scientific MosaicScientonomy|scientific mosaicscientonomy]]began, scientonomists have consistently asked two questions; how to define, and how to identify scientific communities. At Although the momentterm '''scientific community''' is constantly used by scientonomists, the term it currently lacks a scientonomic definition. Among other things, a proper scientonomic definitionof the term would help clarify the scope of scientonomy.|Authors List=Nicholas Overgaard, Felix Walpole,|Formulated Year=2015|Academic Events=Scientonomy Seminar 2015,|Prehistory=Scientific communities have been defined and identified variously by historians, philosophers and sociologists of science. In what follows, three waves of interpretations of scientific communities will be presented. It should be emphasized that these waves are not indicative of all attempts at defining scientific communities.
== Prehistory ==<div class="mw-collapsible mw-collapsed">Scientific Classical sociologists like Max Weber and Robert K. Merton represent the first wave of theorists to define scientific communities have been defined as objects of study. The likes of Weber and identified variously by historiansMerton adopted a normative approach towards analyzing scientific communities – they described how the scientific community ought to conduct research. Weber’s stance on scientific communities is known through his lecture “Science as a vocation”, philosophers and sociologists in which he analyzed science from the perspective of its value as a profession.[[CiteRef::Weber (1946)]] Similarly, Merton defined scientific communities according to a so-called ''ethos of science''. For Merton, the ethos consists of four norms: universalism, communism, disinterestedness, and organized skepticism. [[CiteRef::Merton (1938)]] In what followsboth cases, three waves of we can see that the earliest interpretations of scientific communities will be presentedstudied them normatively, rather than descriptively. It should be emphasized Additionally, the first wave of theoreticians accepted that these waves are not indicative of the overarching scientific community, encompassing all attempts at defining scientific communitiesscientists, formed a singular sociological object.
Classical sociologists like Max Weber and Robert K. Merton represent the first The second wave of theorists to define study scientific communities as objects effectively denied the unity of studyan overarching scientific community, adopting instead an analytic framework based in incommensurability. The likes Thomas Kuhn popularized such analyses of Weber and Merton adopted a normative approach towards analyzing scientific communities – they described how , suggesting that scientific communities are only capable of communicating with and understanding others within the same community and by extension, the scientific same paradigm; cross-community ought discussions could only lead to conduct researchmisunderstandings. Weber’s stance on Kuhn’s interpretation of scientific communities is known through his lecture “Science as a vocation”– indeed, of science more generally – was highly influenced by Ludwig Fleck who, in which he analyzed science from the perspective 1930s, proposed the notion of its value as a profession (Weber). Similarly, Merton defined scientific communities ''thought collective'' acting according to a so-called shared ''ethos of sciencethought style''. For Merton, the ethos consists of four norms[[CiteRef:: universalism, communism, disinterestedness, and organized skepticism Fleck (Merton1979)]] A thought collective is a group that shares a thought style, through which Fleck held that scientific facts are socially constructed. In For both casesKuhn and Fleck, we can see that the earliest interpretations of scientific communities studied them normatively, rather than descriptively. Additionally, the first wave emerged from such specific contexts that they developed a way of theoreticians accepted that thinking only shared by those in the overarching scientific same context and community, encompassing all scientists, formed a singular sociological object.
The second wave of theorists to study scientific communities effectively denied the unity of an overarching scientific community, adopting instead an analytic framework based in incommensurability. Thomas Kuhn popularized such analyses of scientific communities, suggesting that scientific communities are only capable of communicating with and understanding others within the same community and by extension, the same paradigm; cross-community discussions could only lead to misunderstandings. Kuhn’s interpretation of scientific communities – indeed, of science more generally – was highly influenced by Ludwig Fleck who, in the 1930s, proposed the notion of a ''thought collective'' acting according to a shared ''thought style'' (Fleck). A thought collective is a group that shares a thought style, through which Fleck held that scientific facts are socially constructed. For both Kuhn and Fleck, scientific communities emerged from such specific contexts that they developed a way of thinking only shared by those in the same context and community.  The third wave of theories about scientific communities arose out of the realization that scientific communities could be divided into such small units of analysis that the concept of scientific community would become nearly meaningless. Theoreticians of the third wave either regarded scientific community as a mere metaphor or accepted that only highly localized, micro scientific communities existed. In the former case, sociologists like Karin Knorr-Cetina argued that scientific communities did not actually exist, rather they were “taxonomic collectives” or theoretical constructs imposed onto a group that did not recognize itself as such (.[[CiteRef::Knorr-Cetina(1982). ]] In the latter case, sociologists like Peter Galison did not deny the existence of scientific communities, but acknowledged that meaningful scientific practice arose only out of collaboration and competition between micro-communities (Galison). </div> == |History ==As soon as discussions about the laws of scientific change and the field of [[Scientonomy|scientonomy]] began, scientonomists have consistently asked the questions of how to define and how to identify scientific communities. There have been many attempts by scientonomists to answer these questionsdefine the term, and two are of note: the ''Fraser-Walpole Model'' and the ''Supradium Model''. Though these models were proposed in the early history of our discipline – prior to the development of a system of proposed modifications to the theory of scientific change – they are worth discussing as early attempts at defining a scientific community as something other than the bearer of a mosaic. As it turns out, both the Fraser-Walpole and Supradium models are deficient because they emphasize neither the necessary nor sufficient characteristics of a community.
According to the Fraser-Walpole Model, by overlapping different features of scientific communities – the theory only identifies two features: discipline and location – we can figure out which parts of a mosaic certain communities share with others. For instance, we can look at the mosaic of the physics community across all locations, including physicists in France, Britain and other countries; we can look at the mosaic of the French community across all disciplines, including French physicists, chemists and other French scientists of a period; finally, we can look at the mosaic of the community of French physicists in particular, perhaps to compare and contrast with the community of British physicists at a given time.
According to the Supradium Model, an ''interest community'' was a group that shared a particular perception of a given concept, object or proposition (e.g. a community of Copernicans); an ''institutional community'' was a group committed to and recognized as members of the same community (e.g. the Royal Society); and a ''network community'' was a group directly and indirectly in communication with one another (e.g. the Republic of Letters). The main purpose of the Supradium Model was to overlap the elements of interest, institutional and network communities so as to identify a community as clearly as possible and in turn bring the content of its mosaic into sharper focus. In theory, a scientonomist could confidently ascribe a set of theories and methods to a scientific community that shared the same concepts and areas of research, considered itself a community, and facilitated the communication of its theories and methods.
The failure of the Supradium Model was that it never consistently defined the notion of a scientific community using necessary and sufficient characteristics. An interest community was, in essence, a redefinition of the community as “bearer of a mosaic” in the sense that any interest community simply shares a set of theories and methods. Proposing interest communities offered nothing new to scientonomy. Network communities seemed important – indeed, they remain important for understanding the social elements of science – but lacked a formulation that could be incorporated into ''The Laws of Scientific Change''. They were deemed an unnecessary, but possible feature of a scientific community, to be explored – pursued, if you will – in some other way. Lastly, we had institutional communities. Institutional communities seemed the most feasible direction for defining a scientific community given ''The Laws''’ adaptation to changing historical contexts because institutional communities truly recognized themselves as communities, rather than being arbitrary characteristics imposed onto a historical case study by a researcher.  == |Current View ==Currently, ''Scientific scientific community'' refers to the bearer of a [[Scientific Mosaic|scientific mosaic]]. At the moment, the term lacks a formal proper definition in scientonomy. It continues to be referred to as “the bearer of a scientific mosaic”. [[CiteRef::Barseghyan (2015)|p.249]] Yet the concept remains fundamental to the field. For, every time a scientonomist refers to a [[Theory|theory]] that is [[Theory Acceptance|accepted]] or a [[Method|method]] that is [[Employed Method Employment|employed]], they actually mean a theory accepted or a method employed ''by the scientific community''. |Related Topics=Scientific Mosaic, |Page Status=Needs Editing}}Several attempts to define scientific community are being pursued at present. {{Acceptance Record|Community=Community:Scientonomy|Accepted From Era=CE|Accepted From Year=2016|Accepted From Month= Open Questions January|Accepted From Day=1|Accepted From Approximate= No* Can we define a scientific community |Acceptance Indicators=This question was acknowledged as more than simply “the bearer of a mosaic”? legitimate in the [[CiteRef::Overgaard (2016)Scientonomy Seminar 2015]].|Still Accepted=Yes|Accepted Until Approximate== Related Articles == No[[Scientific Mosaic]]}}

Navigation menu