Changes

Jump to navigation Jump to search
47 bytes added ,  14:47, 12 February 2017
no edit summary
|DOD Day=20
|DOD Approximate=No
|Summary='''Sir Isaac Newton''' (1642-1727) was a natural philosopher who lived and worked in England in the 17th and 18th century. Newton’s most notable contributions were made to the fields of physics, mathematics, and scientific method, which were so groundbreaking that he is currently considered to be one of the most important physicists in modern Western history.[[CiteRef::Janiak (2016)]] Philosophers of science credit Newton’s revolutionary theory of gravity and his experimental approach to conducting natural philosophy as outlined in his major work, [[Newton (1687)|The ''Principia]] ('' (Philosophiæ Naturalis Principia Mathematica''), to be the foundation for the dominant Newtonian mosaic which influenced much of late 18th and 19th century science.[[CiteRef::Janiak (2016)]] Some consider The ''Principia'' to be the work that initially created physics as its own scientific field separate from the umbrella of metaphysics and philosophy.[[CiteRef::Janiak (2016)]]
|Historical Context=When Isaac Newton began his studies at Cambridge University's prestigious Trinity College in 1661, more than a century had passed since Nicolaus Copernicus (1473-1543) had proposed a '''heliocentric cosmology''' in his 1543 ''De revolutionibus orbium coelestium'' (''On the Revolutions of Heavenly Spheres''). It had been fifty years since Galileo Galilei (1564-1642) had published his observations with the telescope in 1610. Galileo had discovered dramatic evidence favoring the Copernican system. His discovery of the phases of the planet Venus indicated that it revolved around the sun and was lit by reflected sunlight. His description of four moons circling Jupiter indicated that Earth, with its own moon, resembled this planet. His studies of sunspots indicated that the sun revolved on its axis, and finally, his discovery of surface features on the moon indicated that the moon was another world, as expected under the Copernican system, but not by Aristotelianism. Around the same time, Johannes Kepler had published his laws of planetary motion, indicating that the planets revolved around the sun on elliptical paths, replacing the circular motion and complex epicycles of Copernicus and Ptolemy.[[CiteRef::Westfall (1980)|pp. 1-7]] According to Westfall, "by 1661 the debate on the heliocentric universe had been settled; those who mattered had surrendered to the irresistible elegance of Kepler's unencumbered ellipses, supported by the striking testimony of the telescope, whatever the ambiguities might be. For Newton, the heliocentric universe was never a matter in question".[[CiteRef::Westfall (1980)|p. 6]] A planetary Earth that rotated on its axis and revolved around the sun was incompatible with the accepted Aristotelian physics. The community of the time was engaged with the question of how it could be that the Earth itself was in motion through space.
Although not all of the ontological changes to the mosaic described in The ''Principia'' were immediately accepted, the new experimental philosophy that he described influenced contemporary scientists within the same century of it’s publication. [Newtons philosophy] Both prominent 17th century natural philosophers Christiaan Huygens and John Locke are known to have taken the experimental philosophy, if not necessarily the full content of Newton’s theories, to heart.[[CiteRef::Janiak (2016)]] By 1700 the acceptance of “experimental philosophy” methodological structure had overtaken that of Cartesianism in England.[[CiteRef::Janiak (2016)]]
|Criticism=Although many natural philosophers in the 17th century were convinced by Newton’s views on the the proper method of conducting science, many were not willing to abandon the Cartesian mechanical philosophy. Contemporary philosopher Leibniz in particular was concerned that the theory of gravity as a regression in natural philosophy, as Newton could not account for the source of gravity. To the Cartesians, it was more important that all motion in the universe could be given a direct cause, which was only possible under the mechanical philosophy, even if this amounted to a larger gap between theory and experimental evidence.[[CiteRef::Janiak (2016)]]
|Related Topics=Methodology,
|Page Status=Needs Editing
}}

Navigation menu