# An improved quantum Fourier transform algorithm and applications

@article{Hales2000AnIQ, title={An improved quantum Fourier transform algorithm and applications}, author={Lisa Hales and Sean Hallgren}, journal={Proceedings 41st Annual Symposium on Foundations of Computer Science}, year={2000}, pages={515-525} }

We give an algorithm for approximating the quantum Fourier transform over an arbitrary Z/sub p/ which requires only O(n log n) steps where n=log p to achieve an approximation to within an arbitrary inverse polynomial in n. This improves the method of A.Y. Kitaev (1995) which requires time quadratic in n. This algorithm also leads to a general and efficient Fourier sampling technique which improves upon the quantum Fourier sampling lemma of L. Hales and S. Hallgren (1997). As an application of… Expand

#### Topics from this paper

#### 135 Citations

Exact quantum Fourier transforms and discrete logarithm algorithms

- Mathematics, Physics
- 2003

We show how the Quantum Fast Fourier Transform (QFFT) can be made exact for arbitrary orders (first showing it for large primes). Most quantum algorithms only need a good approximation of the quantum… Expand

The quantum fourier transform and extensions of the abelian hidden subgroup problem

- Mathematics, Physics
- 2002

The quantum Fourier transform (QFT) has emerged as the primary tool in quantum algorithms which achieve exponential advantage over classical computation and lies at the heart of the solution to the… Expand

An Efficient Quantum Algorithm for the Hidden Subgroup Problem over Weyl-Heisenberg Groups

- Mathematics, Physics
- MMICS
- 2008

This work shows that the HSP over Weyl-Heisenberg groups can be solved efficiently on a quantum computer and uses Clebsch-Gordan decompositions to combine and reduce tensor products of irreducible representations. Expand

Representation-theoretical properties of the approximate quantum Fourier transform

- Mathematics, Computer Science
- Applicable Algebra in Engineering, Communication and Computing
- 2008

Among the transformations used in quantum computing the discrete Fourier transform (DFT) plays a key role. A striking fact is that the computational complexity of the DFT with respect to the quantum… Expand

Quantum Fourier transform in computational basis

- Mathematics, Computer Science
- Quantum Inf. Process.
- 2017

A new quantum scheme to encode Fourier coefficients in the computational basis, with fidelity 1 - \delta $$1-δ and digit accuracy ϵ for each Fourier coefficient is detailed. Expand

Quantum Fourier Operators and Their Application

- Physics
- Real Perspective of Fourier Transforms and Current Developments in Superconductivity
- 2021

The application of the quantum Fourier transform (QFT) within the field of quantum computation has been manifold. Shor’s algorithm, phase estimation and computing discrete logarithms are but a few… Expand

Generic quantum Fourier transforms

- Mathematics, Computer Science
- SODA '04
- 2004

This paper uses Bratteli diagrams, Gel'fand-Tsetlin bases, and strong generating sets of small adapted diameter to provide efficient quantum circuits for the QFT over a wide variety of finite Abelian and non-Abelian groups, including all group families for which efficient QFTs are currently known and many new group families. Expand

Quantum Fourier transform over symmetric groups - improved result

- Computer Science, Mathematics
- J. Symb. Comput.
- 2016

This paper provides a new FFT (classical) algorithm over symmetric groups and then transforms it to a quantum algorithm, which is faster than the existing O ( n 4 log ? n ) QFT algorithm. Expand

Quantum Fourier transforms for extracting hidden linear structures in finite fields

- Mathematics
- 2000

We propose a definition for quantum Fourier transforms in settings where the algebraic structure is that of a finite field, and show that they can be performed efficiently by a quantum computer.… Expand

The Power of Strong Fourier Sampling: Quantum Algorithms for Affine Groups and Hidden Shifts

- Mathematics, Computer Science
- SIAM J. Comput.
- 2007

This article shows that hidden subgroups of theq-hedral groups, i.e., semidirect products, and in particular the affine groups $A_p, can be information-theoretically reconstructed using the strong standard method, and proves a simple closure property for the class of groups over which the hidden subgroup problem can be solved efficiently. Expand

#### References

SHOWING 1-10 OF 28 REFERENCES

Quantum Fourier sampling simplified

- Mathematics, Computer Science
- STOC '99
- 1999

It is shown that the distribution sampled after a Fourier transform over Zp can be efficiently approximated by transforming over Z, for any q in a large range, which places no restrictions on the superposition to be transformed. Expand

An exact quantum polynomial-time algorithm for Simon's problem

- Mathematics, Physics
- Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems
- 1997

It is shown that there is a decision problem that can be solved in exact quantum polynomial time, which would require expected exponential time on any classical bounded-error probabilistic computer if the data is supplied as a black box. Expand

Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract)

- Mathematics, Computer Science
- CRYPTO
- 1995

It is shown that any cryptosystem based on what is referred to as a ‘hidden linear form’ can be broken in quantum polynomial time and the notion of ‘junk bits’ is introduced which are helpful when performing classical computations that are not injective. Expand

Algorithms for quantum computation: discrete logarithms and factoring

- Mathematics, Computer Science
- Proceedings 35th Annual Symposium on Foundations of Computer Science
- 1994

Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored are given. Expand

Quantum complexity theory

- Computer Science
- STOC '93
- 1993

This dissertation proves that relative to an oracle chosen uniformly at random, the class NP cannot be solved on a quantum Turing machine in time $o(2\sp{n/2}).$ and gives evidence suggesting that quantum Turing Machines cannot efficiently solve all of NP. Expand

Quantum measurements and the Abelian Stabilizer Problem

- Computer Science, Mathematics
- Electron. Colloquium Comput. Complex.
- 1996

A polynomial quantum algorithm for the Abelian stabilizer problem which includes both factoring and the discrete logarithm is presented, based on a procedure for measuring an eigenvalue of a unitary operator. Expand

Semiclassical Fourier transform for quantum computation.

- Physics, Medicine
- Physical review letters
- 1996

It is shown that the Fourier transform preceding the final measurement in Shor's algorithm for factorization on a quantum computer can be carried out in a semiclassical way by using the ``classical''… Expand

Quantum algorithms and the Fourier transform

- Physics, Mathematics
- Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
- 1998

The quantum algorithms of Deutsch, Simon and Shor are described in a way which highlights their dependence on the Fourier transform. The general construction of the Fourier transform on an Abelian… Expand

Strengths and Weaknesses of Quantum Computing

- Mathematics, Physics
- SIAM J. Comput.
- 1997

It is proved that relative to an oracle chosen uniformly at random with probability 1 the class $\NP$ cannot be solved on a quantum Turing machine (QTM) in time $o(2^{n/2})$. Expand

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer

- Computer Science, Mathematics
- SIAM Rev.
- 1999

Efficient randomized algorithms are given for factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and have been used as the basis of several proposed cryptosystems. Expand